

"Be **regular** and **orderly** in your life, so that you may be **violent** and **original** in your work."

1. GENERATE FOLDERS FROM LIST

2. COPY EXCEL SHEET

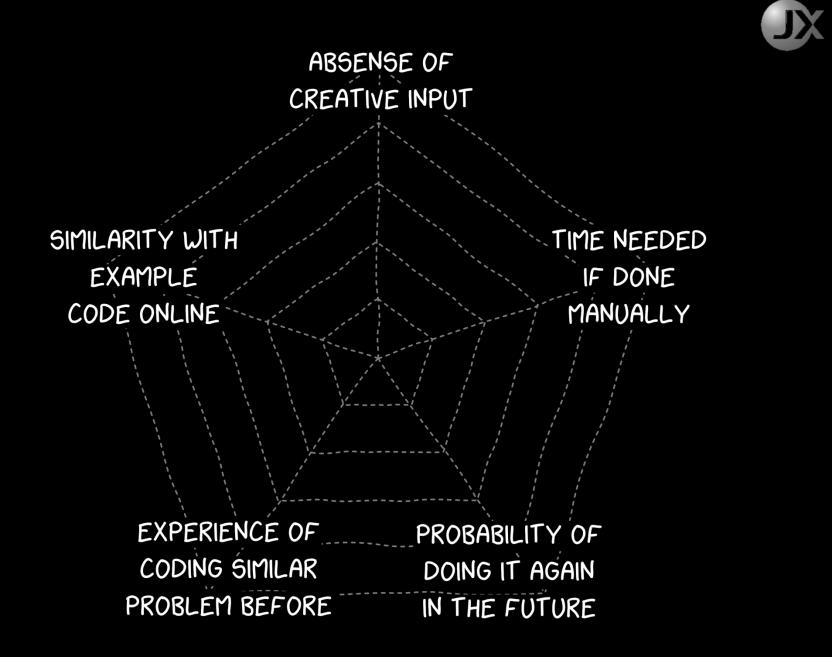
3. EXTRACTING DATA FROM LAS FILES

4. CONTROLLING MOUSE & KEYBOARD

5. DIGITIZE OLD LOGS

Alvin Alexander Geotechnician JX Nippon Oil & Gas Exploration

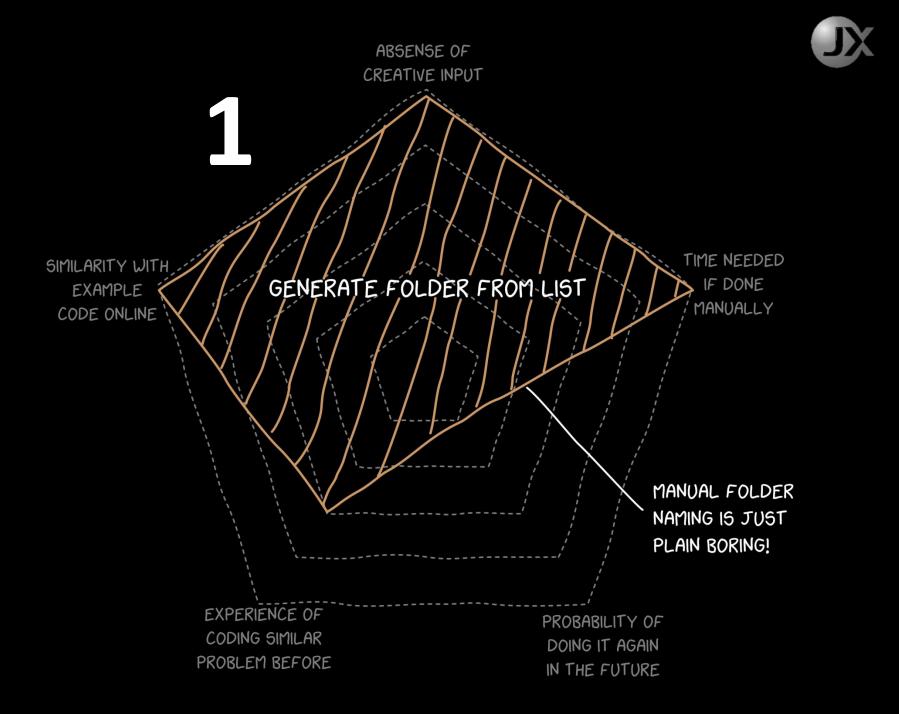
PRACTICAL SCRIPTING IDEAS FOR DATA MANAGERS WITH PYTHON


Why Automate?

- 1. Menial tasks are boring.
- 2. HSE concern. Wrist Pain.
- 3. Minimize mistakes.
- 4. Time Saving in the long run.
- 5. Writing code is fun and creative.

Real Examples

WHEN TO AUTOMATE?

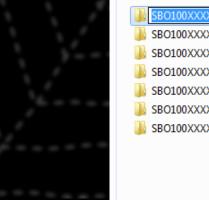

1. GENERATE FOLDERS FROM LIST

2. COPY EXCEL SHEET

3. EXTRACTING DATA FROM LAS FILES

4. CONTROLLING MOUSE & KEYBOARD

5. DIGITIZE OLD LOGS



😑 List_of	_things.txt 🗵	
1	SBO100XXXXXX	COMPOSITE LOG
2	SB0100XXXXXX	EXPLORATION WELL
3	SBO100XXXXXX	PETCOM ANALYSIS
4	SB0100XXXXXX	PETROPHYSICAL STUDY (ENCLOSURE 10)
5	SB0100XXXXXX	SEDIMENTOLOGICAL FEATURES
6	SB0100XXXXXX	TEMPERATURE LOG
7	SB0100XXXXXX	TEST RESULTS AND PETROPHYSICAL INTERPRETATION SUMMARY

- 1. Open List
- 2. Copy one item
- 3. Create Folder
- 4. Rename and paste
- 5. Repeat 2 to 4 until finish

 SB0100XXXXXX COMPOSITE LOG
 Un

 SB0100XXXXXX EXPLORATION WEL
 Un

 SB0100XXXXXX PETCOM ANALYSIS
 Cur

 SB0100XXXXXX PETROPHYSICAL ST
 Co

 SB0100XXXXXX SEDIMENTOLOGICA
 Pas

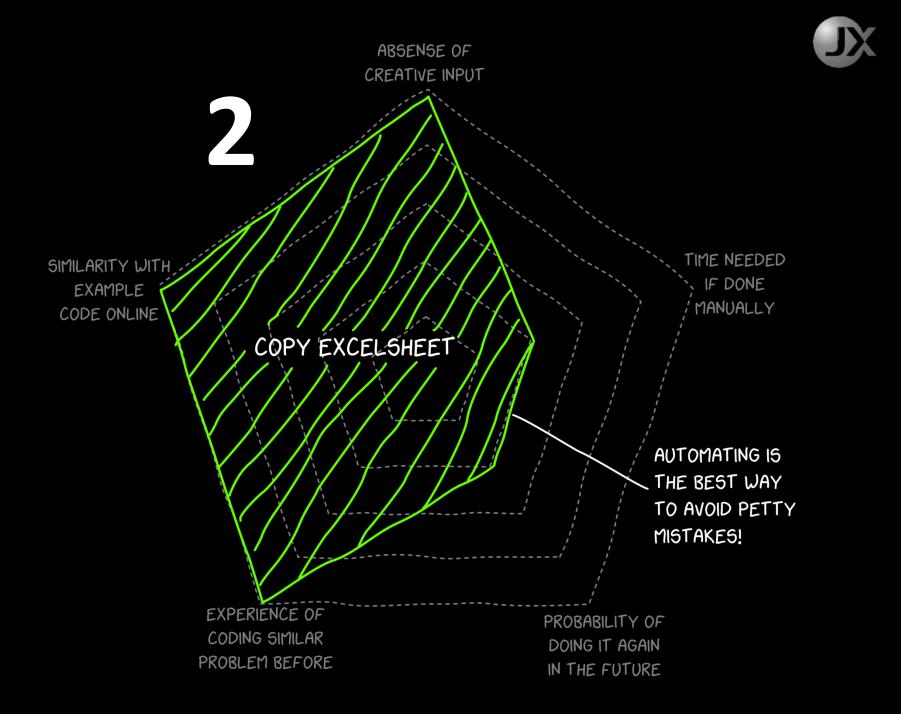
 SB0100XXXXXX TEMPERATURE LOG
 Del

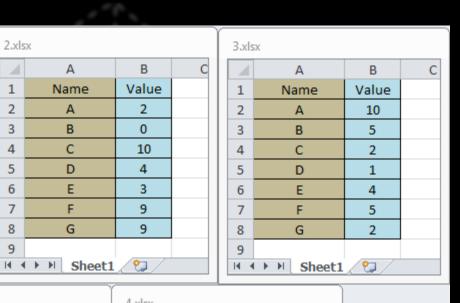
 SB0100XXXXXX TEST RESULTS AND
 Sel

Undo	
Cut	
Сору	
Paste	
Delete	
Select All	
Right to left Reading order	
Show Unicode control characters	
Insert Unicode control character	•
Open IME	
Reconversion	

The list

	List_of_things.txt	×
--	--------------------	---


- 1 SB0100XXXXXX COMPOSITE LOG
- 2 SB0100XXXXXX EXPLORATION WELL
- 3 SB0100XXXXXX PETCOM ANALYSIS
- 4 SB0100XXXXXX PETROPHYSICAL STUDY (ENCLOSURE 10)
- 5 SB0100XXXXXX SEDIMENTOLOGICAL FEATURES
- 6 SB0100XXXXXX TEMPERATURE LOG
- 7 SB0100XXXXXX TEST RESULTS AND PETROPHYSICAL INTERPRETATION SUMMARY


The 5 lines of code

import os
with open("list/List_of_things.txt","r") as lines:
 for line in lines:
 if not os.path.exists(line.strip()):
 os.makedirs(os.path.join(line.strip()))

Generated folders

SBO100XXXXXX COMPOSITE LOG
 SBO100XXXXXX EXPLORATION WELL
 SBO100XXXXXX PETCOM ANALYSIS
 SBO100XXXXXX PETROPHYSICAL STUDY (ENCLOSURE 10)
 SBO100XXXXXX SEDIMENTOLOGICAL FEATURES
 SBO100XXXXXX TEMPERATURE LOG
 SBO100XXXXXX TEST RESULTS AND PETROPHYSICAL INTERPRETATION SUMMARY

5.xls	5X			ľ	4.xls
	А	В	С		
1	Name	Value			1
2	А	9			2
3	В	8			3
4	С	9			4
5	D	10			5
6	E	10			6
7	F	0			7
8	G	2			8
N ↓ ► ► Sheet1					

23

 \equiv

 \mathbf{v}

▶ **1**....

- 0

В

Value

4

10

8

2

6

4

1

🔊 1.xlsx

1

1

2

3

4

5

6

7

8

9

А

Name

Α

В

С

D

Е

F

G

4.xlsx				
	А	В	C	
1	Name	Value		
2	А	8		
3	В	2		
4	С	0		
5	D	7		
6	E	4		
7	F	2		
8	G	5		
Sheet1				

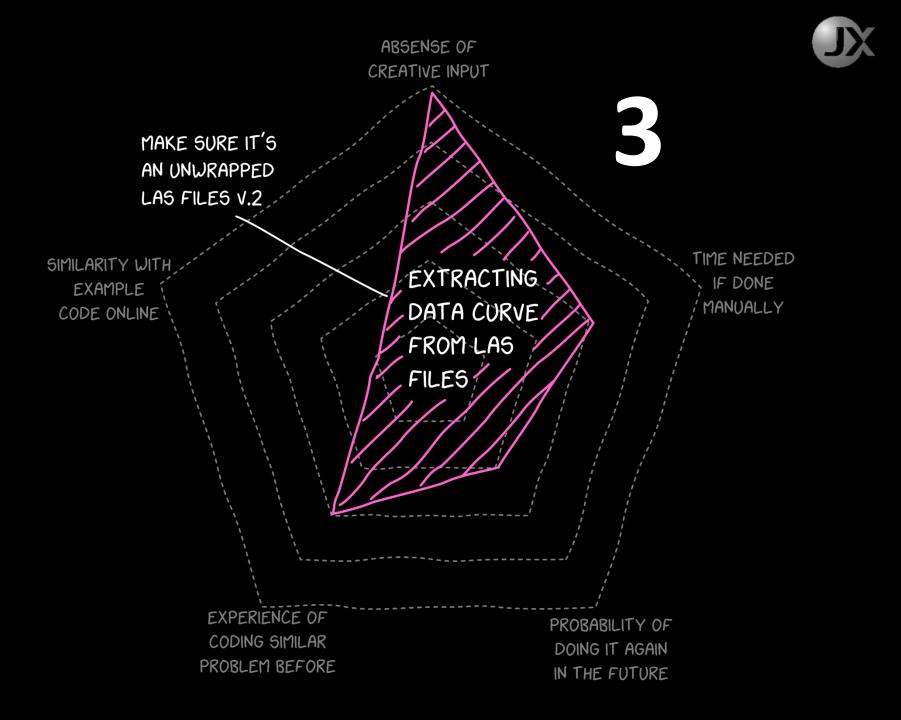
- 1. Create Destination Excel
- 2. Open Origin Excel
- 3. Copy target cells
- 4. Paste into Destination
- 5. Close Origin Excel
- 6. Repeat 2 5


```
import openpyxl as xl
from os import listdir
```

```
# create new output workbook
out_wb = xl.Workbook()
out_ws = out_wb.active
out ws.title = "Combined"
```

```
# Inputs
```

```
files = [(in_folder + f) for f in listdir("Input/")]
```


```
in_Col = 2
in_startRow = 2
in_endRow = 8
```

```
for f in files:
    in_wb = xl.load_workbook(f, read_only=True)
    in_ws = in_wb.get_sheet_by_name("Sheet1")
    col_name = f.split('/')[1]
    out_col = files.index(f)+2
    # writing the header
    out_ws.cell(row=1,column=out_col).value = col_name
```

```
for i in range(in_startRow,in_endRow+1):
    # copying first column if its first file
    if not files.index(f) and i == in_startRow:
        out_ws.cell(row=1,column=1).value = in_ws.cell(row=1,column=1).value
        out_ws.cell(row=i,column=1).value = in_ws.cell(row=i,column=1).value
    # writing the data rows
    out_ws.cell(row=i,column=out_col).value = in_ws.cell(row=i,column=in_Col).value
```

```
# Save the output workbook
out_wb.save("Output/Combined.xlsx")
```

	А	В	С	D	E	F
1	Name	1.xlsx	2.xlsx	3.xlsx	4.xlsx	5.xlsx
2	А	4	2	10	8	9
3	В	10	0	5	2	8
4	С	8	10	2	0	9
5	D	2	4	1	7	10
6	E	6	3	4	4	10
7	F	4	9	5	2	0
8	G	1	9	2	5	2

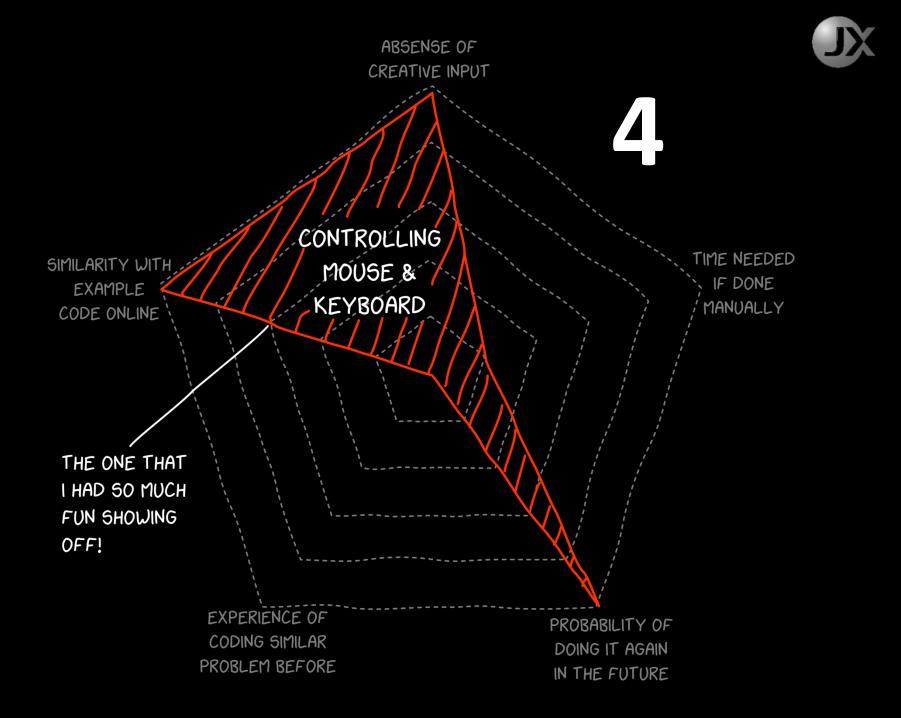
#======================================	
~Version information	
VERS. 2.0	:
WRAP. NO	:
#======================================	
PROV. UWI. 42 API.	: COMPANY WELL FIELD LOCATION SERVICE COMPANY Log Export Date {yyyy-MM-dd HH:mm:ss} PROVINCE UNIQUE WELL ID API NUMBER
#=====================================	: DEPTH : y_Perm
<pre>*</pre>	

JX

Manual Extract Data From LAS

- 1. Open LAS using text editor
- 2. Paste to excel
- 3. Copy one column
- 4. Paste into another excel
- 5. Repeat for all files

...or you can use some software that can read LAS files



∼Ascii

Essentially the code do the following,

- 1. Look for the "~Ascii" keyword
- 2. Copy data as table into intermediary format
- 3. Copy data only at specific depth zones
- 4. Save data table as desired format

```
####
            HELPER METHODS
                                 ####
                                              Method to look for keyword
def keyword line no(filename,keyword='~Ascii'):
    Returns line number of the first keyword encountered.
    Keyword arguments:
    String -- full path to the ascii file
    String -- search keyword (default '~Ascii')
    .....
    count = 1
    with open(filename, "r", encoding="utf-8") as file:
       for line in file:
           if keyword not in line:
               count += 1
               continue
           else:
               break
    return count
                      Method to copy data
def las df(filename):
    ......
    Returns pandas dataframe of las ascii values with depth as index
    Accepts one argument:
    string -- full path to the ascii file
    .....
    skiprows = keyword_line_no(filename)
   return pd.read_csv(filename,delim_whitespace=True,skiprows=skiprows,header=None,names=['Depth','Value'])
def zone_x(las_df,top,base): Method to copy specific depth zones
    Returns pandas dataframe of zone data extracted from LAS dataframe
    Keyword arguments:
    DataFrame -- dataframe of LAS
    float -- top value
    float -- base value
    .....
    top = math.floor(top)
    base = math.ceil(base)
    #print("Top: {}, base: {}".format(top,base))
   df = las df[(las df.Depth >= top) & (las df.Depth <= base)]</pre>
    df.reset_index(drop=True,inplace=True)
    return df
```


Manual Mouse Movement

 Movement of mouse depends solely on our hands which is often less than perfect and irregular.

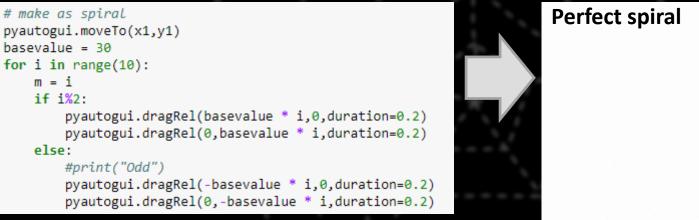
Python Script Automation

import pyautogui import time from math import sin,pi

make a square

basevalue = 200

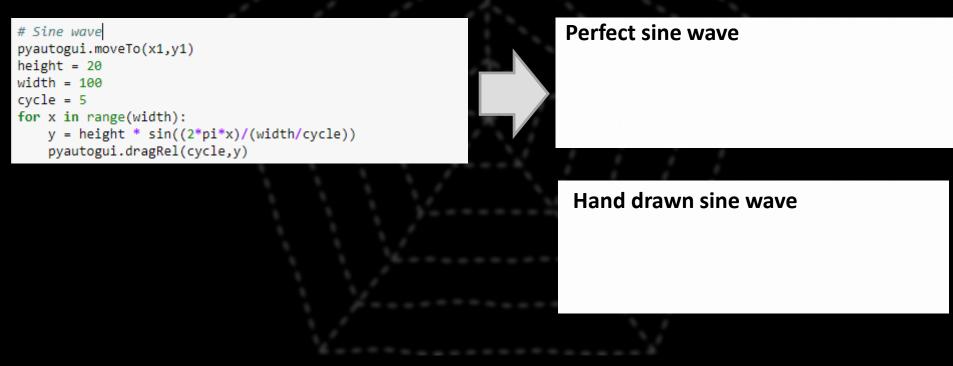
start point x1,y1 = pyautogui.position() print(x1,y1)

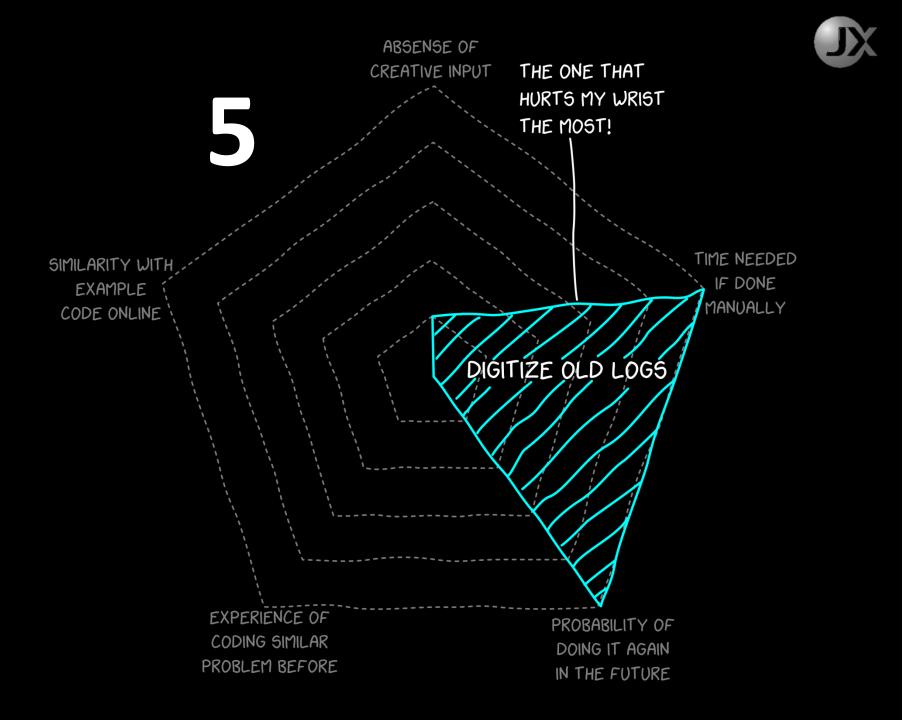


Python Script Automation

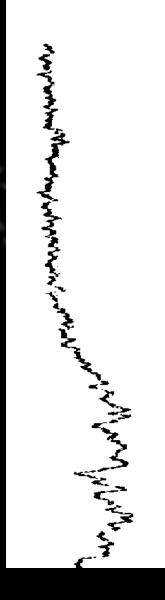
import pyautogui
import time
from math import sin,pi

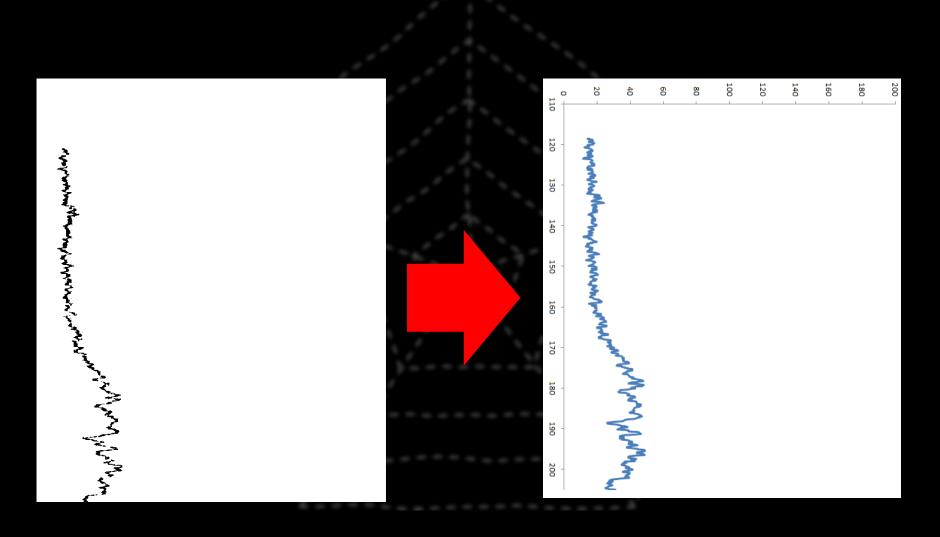
start point
x1,y1 = pyautogui.position()
print(x1,y1)




Python Script Automation

import pyautogui
import time
from math import sin,pi


start point
x1,y1 = pyautogui.position()
print(x1,y1)


Manually Digitize old Logs

- 1. Load image into software with
- 2. Draw to follow the lines as seen on screen

Essentially,

- 1. The script automatically detects the black as data
- Calculate against the width of the image to determine the value
- Calculate against the length of the image to determine the depth

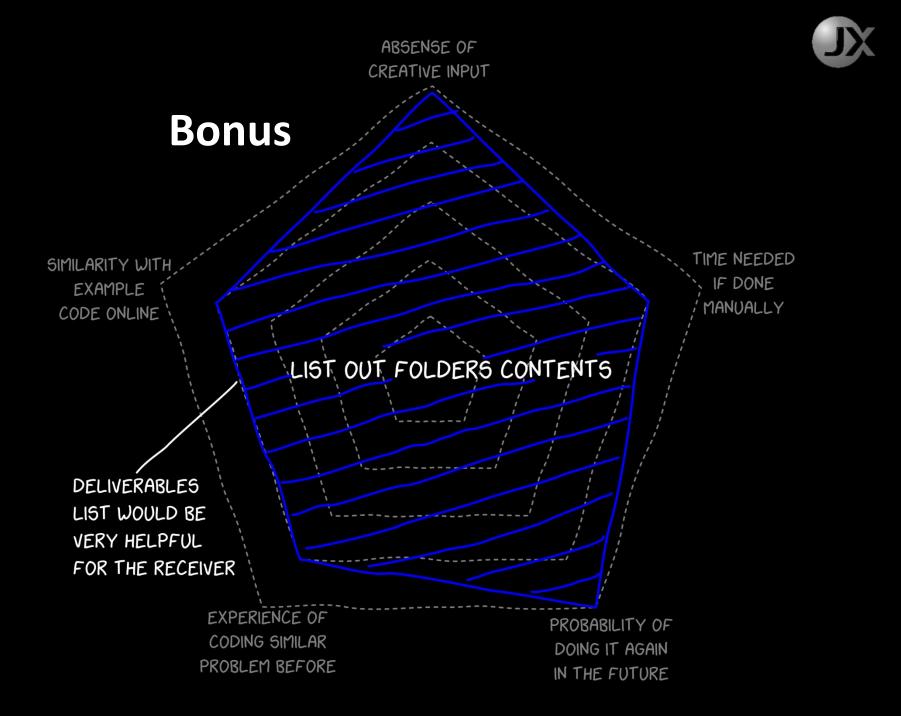
from PIL import Image
import math
import pandas as pd
import numpy as np

```
# Setup Variables
img_file = "Well_1/DTC_100_2730_-450_150.png"
output_file = img_file[:-4] + ".txt"
x_min = -450
x_max = 150
y_min = 100 # in depth unit
y_max = 2730 # in depth unit
step_size = 0.1 # in depth unit
multiples = 3 # lengthening of log
```

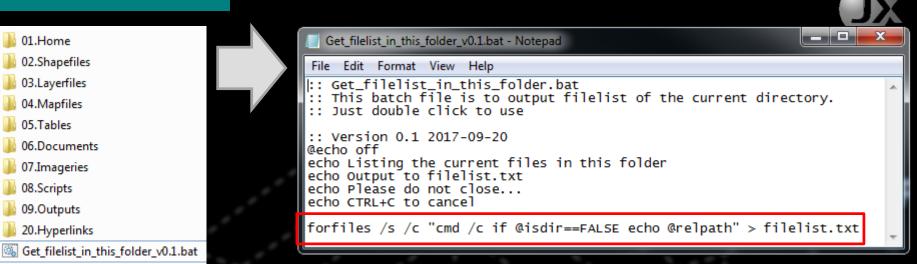
```
img = Image.open(img file,mode='r')
width = x \max - x \min
height = y \max - y \min
steps count = math.ceil(height/step size)
height = step size * steps count
y_max = y_min + height #main calculation time
img = img.resize((img.width,steps_count * multiples))
pixels img = [(y,x)
     for y in range(img.height)
     for x in range(img.width)
     if img.getpixel((x,y)) == 0]
df = pd.DataFrame(pixels_img)
dfx = df.groupby([0]).median().rename(columns = {1:'median'})
dfx['max'] = df.groupby([0]).max()
dfx['min'] = df.groupby([0]).min()
dfx['selected'] = np.nan
dfx['pixel row'] = dfx.index
dfx = dfx[dfx.index % 3 == 0]
dfx = dfx.reset index(drop=True)
for index, row in dfx.iterrows():
    if index != 0 and index < dfx.shape[0] - 1:
        before = dfx['median'][index - 1]
    else:
        before = dfx['median'][index]
```

now = dfx['median'][index]

if (before == now):
 dfx.set_value(index,'selected',dfx['median'][index])
elif (before > now):
 dfx.set_value(index,'selected',dfx['min'][index])
elif (before < now):
 dfx.set_value(index,'selected',dfx['max'][index])</pre>


dfx['Depth'] = (dfx['pixel_row'] * (step_size/3) + y_min)
dfx['Value'] = (dfx['selected'] * (width/img.width)) + x_min

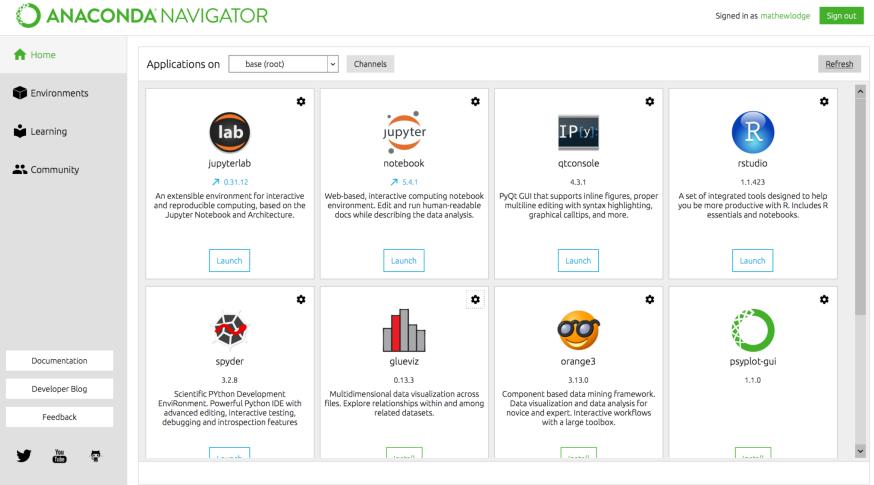
dfx_output = dfx[['Depth', 'Value']]
dfx_output.to_csv(path_or_buf=output_file,sep="\t",index=False)
print("Finished")



Bonus Example

Batch File Automation

filelist.txt - Notepad	C:\Windows\system32\cmd.exe
<pre>File Edit Format View Help File Edit Edit Edit Format View Help File Edit Format View Help File Edit Edit Edit Edit Edit Edit Edit Edit</pre>	Listing the current files in this folder Output to filelist.txt Please do not close CTRL+C to cancel

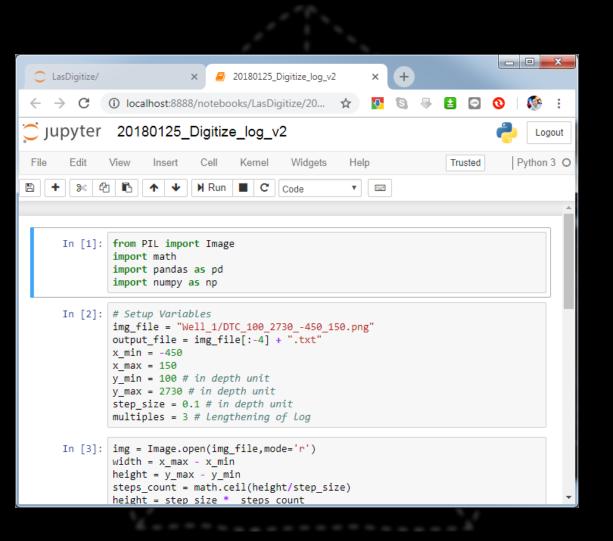


Friendly Tools

Anaconda Python Distribution

Help you manage data science packages for Python

For Python it's like Android's "Play Store" Apple's "App Store"

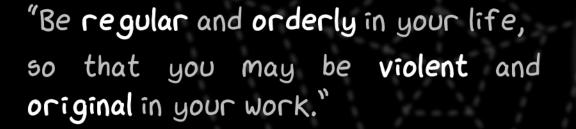

Friendly Tools

Jupyter Notebook

Full IDE is usually hard to learn while coding using text file is too tedious

Notebook Cells

 it is so much easy to edit & run specific lines of codes using Notebook cells.

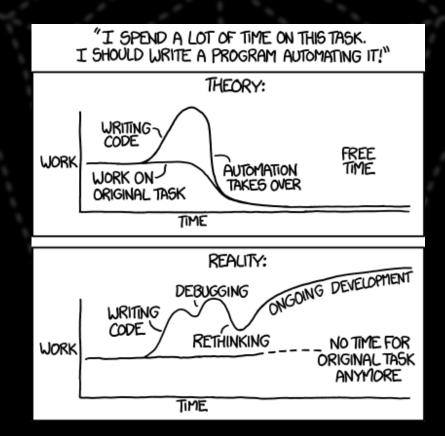


Final Tips

Scripts should never not be general purpose

Write simple first, then combine

Writing scripts is fun, try it!


- GUSTAVE FLAUBERT -

Thank you!

You can have all the codes here.

My Contact Info Email: alvin@noex.com.my

