



## USING MACHINE LEARNING TO EXTRACT DATA





# **HELLO!**

#### I am Manoj

I am here to share a case study on Machine learning You can find me at manoj@rbtsb.com

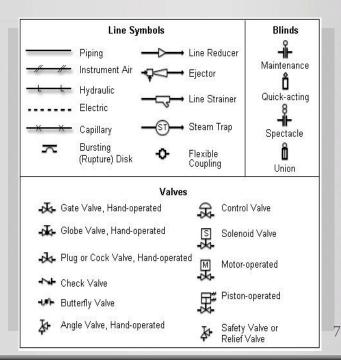


## ff

Nobody phrases it this way, but I think that artificial intelligence is almost a humanities discipline. It's really an attempt to understand human intelligence and human cognition — Sebastian Thrun

3

## 1. Background


## **Background - Problem statement**

- Customer is an engineering consulting company in oil and gas industry
- As part of regular activities, engineering drawing schematics come in scanned copy image form
- A voluminous, repetitive and manual job is to extract various information, metadata from the schematics
  - Manual information extraction was expensive, slow and error prone

## 2. Scope of Work

## **Scope of Work**

Automation of the extraction of metadata from scanned engineering drawings (P&ID – piping and instrumentation diagrams) using AI techniques



## 3. Challenges

## Challenges

Automation of metadata of a P&ID has challenges: Large and complicated diagrams involving many components, pipelines etc.

Labelling are sometimes handwritten

Low resolution



# **Solution Approach**

Image processing and deep neural network models
Deep learning platform

10

## Solution

#### Objective

Automation refers to extracting relevant properties of each engineering component (like type of component, its size) and their connectivity in a particular engineering drawing (schematic)

#### Output

The output of the exercise is to generate a spreadsheet automatically from scan copy of an engineering drawing which captures all the above properties for each component.

## **Solution - Computer vision with deep learning**

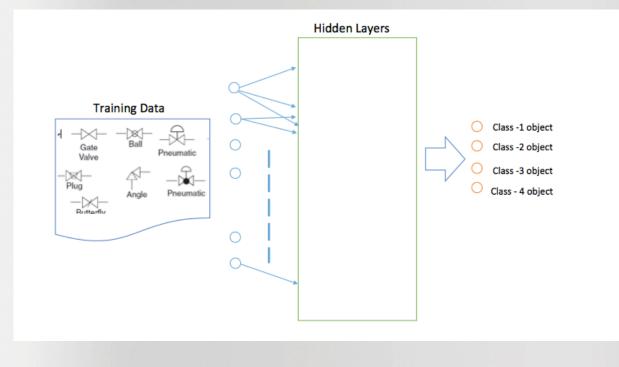
#### **Design Decision**

It is a computer vision problem solved with technologies like image processing and deep neural network models

#### Solution Approach

For example, detection of a particular component is a multiclassification problem

#### Tool


Model is trained with various labelled engineering components and deep learning platform

## A Well trained model

System can automatically detect even if the components are scaled or rotated in the actual drawing



#### **Deep Neural network architecture for object recognition**



# With 200 dpi resolution result is 100% correct

## 66

Aim for simplicity in Data Science. Real creativity won't make things more complex. Instead, it will simplify them — Damian Duffy Mingle

### **Benefits of Machine learning in this project**

#### First

Less amount of training data for AI model required, as shapes are well defined

#### Second

Modern deep learning platform like *TensorFlow* automatically generates other geometric transformations like scaling, rotation from the basic shape

### **Tangible benefits**

ROI for the client comes in the form of below benefits:

Much faster processing (from hours to few seconds)
Elimination of human errors, omissions

Direct manpower reduction (about 70%), as only final evaluations and cases where tool fails to perform job, go to staff

## **Next Step**

Identify how valves are connected through pipes

Identify connectivity and
To read the labels (text) in the drawing

## 66

## Neither Man, nor machine can replace its creator — Tapan Ghosh, Faceless The Only Way Out

# **THANKS!**

You can find me at manoj@rbtsb.com

